
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

1 Instructor: Daniel Llamocca

Microprocessor Design

INTRODUCTION

 Abstraction Layers in Computer Systems Design: Transistor Circuits  Logic Gates  Register Transfers  Microarchitecture

 Instruction Set Architecture  Operating Systems  Programming Languages  Algorithm

 Typical devices used to implement digital systems (they can be implemented with a hardware-description language):
 ASICs, FPGAs: For dedicated hardware implementation. It requires highly specialized design.
 General-Purpose Microprocessors, Microcontrollers (e.g. embedded). Software development.
 Specialized uPs: PDSPs (programmable digital signal processor).

 ASICs or uPs? Performance vs. flexibility. ASIC design requires high development cost, not reprogrammable.
 FPGAs: Intermediate option between ASICs and uP. Not commonly used for processor implementation. Operating frequencies

can be relatively low compared to uP, but can achieve higher performance for specific tasks. They are reconfigurable.
 PSoCs (Programmable System-on-Chip). They integrate reconfigurable logic (like an FPGA), a hard-wired microprocessor,

and peripherals. With proper software/hardware co-design, high performance solutions can be attained.

COMPUTER HARDWARE ORGANIZATION

 Computer: Processor + I/O + Memory

CENTRAL PROCESSING UNIT
 Also called Processor. It consists of a Datapath and Control Unit

 Datapath:
 Register File (set of Registers): They hold data and memory address values during the execution of an instruction.

 Arithmetic Logic Unit (ALU): Shared operation unit that performs arithmetic (e.g., addition, subtraction, division)
and bit-wise logic (e.g., AND, OR, operations).

 Control Unit: To control operations performed on the Datapath and other components (e.g. memory). It is in charge
of executing instructions. Instructions are read from memory. To execute a particular instruction, this unit asserts specific
signals at certain times to control the registers, ALU, memories and ancillary logic. A Control Unit is usually implemented
as a large Finite State Machine (FSM) with ancillary logic.

 Complex CPU: Multiple control units and datapaths.

Harvard vs. Von Neumann

Harvard:
 Instruction memory and Data memory
 Operands usually placed in registers in the CPU: register-to-register architecture

Von
Neumann:

 One memory for both instruction and data
 Operands placed in an accumulator register or in the instruction memory: register-memory architecture

Memory

Data /

Instruction

OUTPUT

UNITS

INPUT

UNITS

CONTROL

UNIT
ALU

REGISTERS

PROCESSOR (CPU)

ADDRESS/DATA BUS

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

2 Instructor: Daniel Llamocca

SINGLE-CYCLE HARDWIRED CONTROL

BASIC PROCESSOR
 Only one instruction memory. No data memory.
 Data can be loaded onto the ALU on one clock cycle.

 Available Registers: R0 (register 0, 4 bits), R1 (register 1, 4 bits), OUT (output register, 4 bits), PC (program counter, 4

bits), IR (instruction register, 8 bits).

 Instruction Memory: Stores up to 16 8-bit instructions

 Program Counter (PC): To execute the instructions in sequence, it is necessary to provide the address in memory of the

instruction to be executed. In a computer, this address comes from a register called PC.
 Instruction Decoder: Converts instructions into control bits. This is a combinational circuit.

 Instruction Set: Instructions are specified in the Instruction Register (IR).

DR=0  R0 is the Destination register, DR=1  R1 is the Destination register.

SR=0  R0 is the Source register, SR=1  R1 is the Source register.

IR:

OPCODE

DR SR

IMMEDIATE DATA

Destination Register
Source Register

ALU

R0
E

R1
E

0 1 0 1

1 0

OUT
E

LEDS

IN

1 0

1 0

I
R
[
7
.
.
0
]

I
R
[
7
.
.
5
]

I
R
[
3
.
.
0
]

L_R0 L_R1

M3

M1

M2M4

M5

L_OPloadi
addi
add

sr0
4

4

4 4

1 0

+

M6

cin

0000

PC
E

S_EN

STEP

4

IR[3..0]

Instruction

Memory

(16x8)

WE

D[7..0]

IR[7..0]

4

4

R0 R1

R1

R0 0

1

IR[4]

M1 M2 M3 M4 M5 M6 L_R0 L_R1 L_OP

INSTRUCTION

DECODER

CONTROL UNIT
DATAPATH UNIT

z

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

3 Instructor: Daniel Llamocca

OPCODE (IR[7..5]) Instruction Operation
000 MOV DR, SR DR  SR

001 LOADI DR, DATA DR  DATA, DATA = IR[3..0]

010 ADD DR, SR DR  DR + SR

011 ADDI DR, DATA DR  DR + DATA, DATA = IR[3..0]

100 SR0 DR, SR DR  0&SR[3..1]

101 IN DR DR  IN

110 OUT DR OUT  DR

111 JNZ DR, ADDRESS

PC  PC + 1 if DR=0

PC  IR[3..0] if DR0
* ADDRESS = IR[3..0]

 opcode: IR[7..5]: This is the operation code of an instruction. This group of bits specifies an operation (such as add,

subtract, shift, complement in the ALU). If it has m bits, there can be up to 2m distinct operations.

 Immediate Data: IR[3..0]. This is called an immediate operand since it is immediately available in the instruction.

Executing Instructions:

 IN DR: DR grabs the contents from the input

IN R0: 1010XXXX  M1  1, L_R0  1, M6  0

IN R1: 1011XXXX  M1  1, L_R1  1, M6  0

 OUT DR: Places the contents of DR on the output register

OUT R0: 1100XXXX  M2  0, L_OP  1, M6  0

OUT R1: 1101XXXX  M2  1, L_OP  1, M6  0

 LOADI DR, DATA: Copies immediate DATA onto DR

LOADI R0, DATA: 0010d3d2d1d0  M5  1, M3  1, M1  0, L_R0  1, M6  0

LOADI R1, DATA: 0011d3d2d1d0  M5  1, M3  1, M1  0, L_R1  1, M6  0

 ADDI DR, DATA: Adds immediate DATA and DR, and copies the result onto DR

ADDI R0, DATA: 0110d3d2d1d0  M2  0, M5  1, M3  1, M1  0, L_R0  1, M6  0

ADDI R1, DATA: 0111d3d2d1d0  M2  1, M5  1, M3  1, M1  0, L_R1  1, M6  0

 ADD DR, SR: Adds SR and DR, and copies the result onto DR

ADD R0,R0: 01000XXX  M40, M50, M20, M31, M10, L_R01, M60

ADD R0,R1: 01001XXX  M40, M50, M21, M31, M10, L_R01, M60

ADD R1,R0: 01010XXX  M40, M50, M21, M31, M10, L_R11, M60

ADD R1,R1: 01011XXX  M41, M50, M21, M31, M10, L_R11, M60

1 0 1 DR X X X X

0 1

1 1 0 DR X X X X

0 1

0 0 1 DR d3 d2 d1 d0

0 1

0 1 1 DR d3 d2 d1 d0

0 1

0 1 0 DR SR X X X

0 1 0 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

4 Instructor: Daniel Llamocca

 MOV DR, SR: Copies the contents of SR onto DR

MOV R0, R0: 00000XXX  M2  0, M3  0, M1  0, L_R0  1, M6  0

MOV R1, R1: 00011XXX  M2  1, M3  0, M1  0, L_R1  1, M6  0

MOV R0, R1: 00001XXX  M2  1, M3  0, M1  0, L_R0  1, M6  0

MOV R1, R0: 00010XXX  M2  0, M3  0, M1  0, L_R1  1, M6  0

"MOV R0,R0", "MOV R1,R1"(can be used as NOP instruction)

 SR0 DR, SR: Shifts (to the right) the contents of SR and places the result onto DR

SR0 R0,R0: 10000XXX  M40, M50, M20, M31, M10, L_R01, M60

SR0 R0,R1: 10001XXX  M40, M50, M21, M31, M10, L_R01, M60

SR0 R1,R0: 10010XXX  M40, M50, M21, M31, M10, L_R11, M60

SR0 R1,R1: 10011XXX  M41, M50, M21, M31, M10, L_R11, M60

 JNZ DR, ADDRESS: Jumps to a certain instruction if DR0. This is how computers implement loops.

JNZ R0, ADDRESS: 1110a3a2a1a0  M6  0 if z = 1, M6  1 if z = 0

JNZ R1, ADDRESS: 1111a3a2a1a0  M6  0 if z = 1, M6  1 if z = 0

* M6  0  PC  PC + 1; M6  1  PC  IR[3..0]

Example:
 Write an assembly program for a counter from 1 to 5: 1, 2, 3, 4, 5, 1, 2, 3, …. The count must be shown on the output

register (OUT).

start: loadi R0,1

 out R0  OUT = 1

 addi R0,1

 out R0  OUT = 2

 addi R0,1

 out R0  OUT = 3

 addi R0,1

 out R0  OUT = 4

 addi R0,1

 out R0  OUT = 5

 jnz R0, start

1 0 0 DR SR X X X

0 1 0 1

R1

R0 0

1

IR[4]

zR

1: if R=0

0: if R0
1 1 1 DR a3 a2 a1 a0

0 1

0 0 0 DR SR X X X

0 1 0 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

5 Instructor: Daniel Llamocca

Example:
 Write an assembly program for a counter from 2 to 13: 2,3,…, 13,2,3,… The count must be shown on the output register

(OUT). Use labels to specify any address where your program jumps. Note that you can have only up to 16 instructions.
 Provide the contents of the Instruction Memory.

start: loadi R0,2

 loadi R1,4

loop: out R0  OUT: shows the count

 addi R0,1

 addi R1,1

 jnz R1, loop

 loadi R0,1

 jnz R0, start

Single-Cycle Computer Shortcomings:
 ALU operations that might require more than one cycle to execute (e.g. multiplication, division) cannot be executed.

 Lower limit on the clock period based on a long worst-case delay path. Pipelining of the datapath is required to reduce the
combinational delay between registers. This requires multiple-cycle control.

MULTIPLE-CYCLE HARDWIRED CONTROL

SIMPLE PROCESSOR
 Instruction (or Program) Memory and Data Memory separated (Harvard architecture).
 A handful of registers: A, PC, PTR, MDR, IR
 8-bit processor: Data bus is 8-bits wide
 Data and Instruction memories: Memory contents are 8-bits wide. The size of the memories is 64 KB, this requires 16 bits

to address all bytes. Address bus is then 16-bits wide.
 Program Counter (PC): Keeps track of address of the instruction to be executed next. It points to the Instruction Memory.

It can be i) incremented by 1, ii) incremented by an 8-bit offset, iii) modified to an arbitrary 8-bit or 16-bit address.
 PTR Register (16 bits): Points to data memory.
 Control Unit: It includes an Instruction Decoder and logic to update the Program Counter.

 Instruction Decoder: Since this is multiple-cycle control, the Instruction Decoder includes a FSM along with ancillary logic.
Look at the ‘Simple Processor’ in Unit 4 for an FSM example: instructions are processed sequentially, once an instruction
finishes its execution, we can load the next instruction.

PROGRAM EXECUTION
 The processor reads instructions from the Instruction Memory (one after the other) and executes them. The instructions

are a string of bytes that specify a particular operation to be carried out. The Control Unit asserts specific signals at the
proper times so as to execute a particular instruction. The results of the operation can be stored in a register, data memory,
and/or and output interface. Some instructions might modify the Program Counter at will.

 At power up, usually the processor reads the instruction from the first memory address. This is done by asserting the reset
input of the Program Counter Register at power up.

address

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

INSTRUCTION MEMORY

00100010

00110100

11000000

01100001

01110001

11110000

00100001

11100010

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

6 Instructor: Daniel Llamocca

SIMPLE PROCESSOR - DIAGRAM:

M
D
R

E
P
T
R

E
B

E

A
E

A
L
U

C
O

N
T

R
O

L
 U

N
IT

D
A
T
A

B
U
S

01

I
n
s
t
r
u
c
t
i
o
n

M
e
m
o
r
y

(
6
4
K
x
8
)

D
a
t
a

M
e
m
o
r
y

(
6
4
K
x
8
)

O
E

W
E

O
E

W
E

O
U
T

E

I
N

E

L
E
D
S

PC

E

1
6

+
8

8

01

1
6

1
6

...

S
W
I
T
C
H
E
S

01

A
D
D
R
E
S
S

B
U
S

E

I
R

E

8

8

1
6

1
6

1
6

s
e
l

X
Y

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

7 Instructor: Daniel Llamocca

ARITHMETIC LOGIC UNIT:

sel Operation Function Unit
000 Z <= X + Y Add X and Y

Arithmetic
001 Z <= X - Y Subtract Y from X

010 Z <= X + 1 Increment X

011 Z <= X - 1 Decrement X

100 Z <= not(X) Complement X

Logic
101 Z <= X and Y Bitwise AND

110 Z <= X or Y Bitwise OR

111 Z <= X xor Y Bitwise XOR

INSTRUCTION SET:
 The format of the instructions is as follows: OPCODE (1 byte) | (optional fields: up to 2 bytes)

 OPCODE: Unique identifier that specifies a particular instruction.
 Other fields: usually they are address and data values

 An instruction may take up to 3 bytes in memory.
 Collection of available instructions:

Assembly Instruction
mnemonic

Machine
code

Meaning

ld addr,#val 75 aa xx Load 8-bit value (val) into memory location at addr.
ld ptr, #data 90 yy yy Load 16-bit value (data) into register ptr.
ld A, @ptr E0 Load contents of memory location pointed to by ptr into A.
and A, #val 54 xx Bit-wise AND: A ← A and val
bnz A, target 70 zz If A≠0, then branch to the address provided by target

If A=0, then go to next instruction
inc addr 05 aa Increments the contents of memory location at addr.
dbnz addr, target D5 aa zz Decrements the contents of memory location at addr and branch if the result

is not zero.

Observations:
 Most of the instructions in the table above only allow 8 bits to specify a memory address.
 PTR is a 16-bit register. To load a 16-bit value on it, we require two read cycles from Instruction Memory. This is taken

care of by an intermediate register that grabs 8 bits at a time.

 bnz, dbnz: A label specifies the instruction to branch to. The assembler determines the address to branch to and specifies

it in the machine code (here we can only branch to the first 256 memory positions as only one byte is available to specify
the address to branch to).
Alternative assembler approach: the assembler determines an offset. This way we can branch (up or down) 256 positions
from the current instruction. This approach requires specification of whether to add or subtract the offset from the PC value,
thereby increasing the machine code and requiring the PC circuitry to allow for addition and subtraction.

sel(0)

+ cin + cin

1

Y

X

sel(1)

sel(2)

0 1

0 1

0 1

sel

8

8

0 1

0 1

8

3

ALU
Z

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

8 Instructor: Daniel Llamocca

SAMPLE PROGRAM:

Assembly Instruction mnemonic Start Address Machine Code (hex) Comments
 ld 0x20,#0 0x0000 75 20 00
 ld 0x21,#20 0x0003 75 21 14 20 is a decimal value
 ld ptr,#0x2000 0x0006 90 20 00
loop: ld A, @ptr 0x0009 E0 Only 1 byte required
 and A,#0x03 0x000A 54 03
 bnz A, next 0x000C 70 10
 inc 0x20 0x000E 05 20
next: dbnz 0x21, loop 0x0010 D5 21 09

1) ld 0x20,#0: Load 0x00 at address 0x0020. Instruction requires 3 bytes.

The OPCODE (75) is read from Instruction Memory. The next byte (0x20) is

read and placed on PTR (left-appending zeros) via the address bus. The following

byte (0x00) is read and placed on the data bus. Then we write 0x00 in Data

Memory at address 0x0020 (alternatively, we can store 0x00 on MDR, this

allows for flexibility to choose when to write on Data Memory).

Start of Instruction: PC: 0x0000 End of Instruction: PC: 0x0003

2) ld 0x21,#20: load 0x14 at address 0x0021. Instruction requires 3 bytes.

We write 0x14 in Data Memory at address 0x0020 (as in instruction 1)

Start of Instruction: PC: 0x0003 End of instruction: PC: 0x0006

3) ld ptr,#0x2000: load 0x2000 on PTR. Instruction requires 3 bytes.

The OPCODE (90) is read from Instruction Memory. The next byte (0x20) is

placed on the least significant byte of PTR. The following byte (0x00) is placed

on the most significant byte of PTR.

Start of Instruction: PC: 0x0006 End of Instruction: PC: 0x0009

4) ld A, @ptr: contents of the memory location pointed to by PTR are loaded

into A. This instruction requires 1 byte.
The OPCODE (E0) is read from Instruction Memory. The data located at the

address pointed to by PTR (0x2000 in this example) is read and placed on the

ALU where we transfer it to register A (this ALU transfer can be done by setting
the register B to 0x00 and performing a bit-wise OR)

Start of Instruction: PC: 0x0009 End of Instruction: PC: 0x000A

5) and A,#0x03: A ← A AND 0x03. This instruction requires 2 bytes.

The OPCODE (54) is read from Instruction Memory. The next byte (0x03) is

placed on register B via the data bus. Then a bitwise AND with A is performed
on the ALU, the result is stored in A.

Start of Instruction: PC: 0x000A End of Instruction: PC: 0x000C

6) bnz A, next: Branch to next (0x0010) if A is nonzero. This instruction requires 2 bytes.

The OPCODE (70) is read from Instruction Memory. The next byte (0x10) is read and placed on IR. To compare A with

zero, A is placed on MDR. If A=0, PC is incremented by 1 (as usual). If A≠0, the value at IR (0x10) is placed on PC.

Start of Instruction: PC: 0x000C

End of Instruction: If we do not branch (A is zero), then PC: 0x000E. If we branch (A is nonzero), then PC: 0x0010

7) inc 0x20: The data located in address 0x0020 is incremented by 1. This instruction requires 2 bytes.

The OPCODE (05) is read from Instruction Memory. The next byte (0x20) is placed on PTR, and we read the data at

0x0020. The data is placed on the ALU, where it is incremented by 1 and placed in A. Then, the contents of A are written

on the Data Memory at memory location specified by PTR (0x0020).

Start of Instruction: PC: 0x000E End of Instruction: PC: 0x0010

8) dbnz 0x21, loop: Decrement the data located in address 0x0021. If the result is nonzero, branch to loop (0x0009)

The OPCODE (D5) is read from Instruction Memory. This instruction requires 3 bytes. The next byte (0x21) is placed on

PTR. The next byte (0x09) is read and placed on IR. Then we read data at 0x0021 (pointed to by PTR). The data is placed

on the ALU, (where it is decremented by 1 and placed in A. A is then placed on MDR to compare A with zero. If it is zero,

we increment PC by 1 (as usual). If A is nonzero, the value on IR (0x09) is placed on PC.

Start of Instruction: PC: 0x0010

End of Instruction: If we do not branch, then PC: 0x0013. If we branch, then PC: 0x0009b

75

Address

Instruction 120

00

75

21

14

90

20

00

E0

54

03

70

02

05

20

D5

21

...

0A

8 bits

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0010

0011

0012

FFFF

...

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

INSTRUCTION MEMORY

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

9 Instructor: Daniel Llamocca

MORE COMPLEX PROCESSORS

 Instruction/Data Memory might be located in the same chip. The addressing control is more complex. Also, memory control

is more involved as we are requires to deal with different technologies (e.g.: DRAM, SRAM, DDRRAM).
 ALU: It includes the common outputs V (overflow), C (carry out), N (sign), Z (zero); these are called Status Bits (usually

stored in a register), and are very useful during the execution of instructions. Also, it includes a ‘carry in’ input for multi-
operand addition/subtraction.

 Branching instructions: Conditional (e.g.: bz, bnz, bnn, bn, bv, bnv, bc, bnc) and unconditional branches (jmp).

 Pipelined control: So, far the FSM inside the control unit can only process one instruction once the previous one has been

completed. By pipelining the datapath, we can execute the next instruction before the current instruction finishes. The design
of the FSM is thus more complex.
 Instruction Fetch (IF): Instruction is fetched from the instruction memory and the value of PC is updated.
 Instruction Decode (ID): The instructions is turned into control signals
 Operand Fetch (OF): The instruction operands are retrieved (from registers or memory) and placed on registers.
 Execute Stage (EX): An ALU operation is executed.
 Write Back (WB): Data might be written back into the Data memory.

 Addressing modes: They determine how the CPU instructions access operands (usually memory locations). For example:
 Inherent: Instructions using this addressing mode have either no operands or the operands are CPU registers. CPU does

not access memory locations. Example (HCS12):
nop; no operation

iny; Y <= Y+1

clrb; B <= 0

tfr D, Y; Y <- D

 Immediate: Operand values embedded in the instruction. Example (HCS12):

ldax #$4C32; Register X gets the number 0x4C32.

 Direct: Instructions access operands from memory locations. Example (HCS12):

ldaa $E109; Register A gets the contents of memory address 0xE109.

 Relative: Used for branch instruction. The distance of the branch (of jump) is called offset. Example (HCS12):

bmi start; If status bit N is 1 then PC <-PC + offset; otherwise PC <- PC+1. offset is calculated by the compiler based

on the address of the current instruction and the instruction address where we are supposed to branch.

 Indexed: Instructions access operands from memory locations. However, the memory address is computed based on a
based address (usually from a register) and an offset. Example (HCS12).
ldaa B, X; Register A gets the contents of the memory address B+X.

 Numeric co-processors (e.g. pipelined CORDIC, square root) are included.
 Data and instruction cache are included.
 A Stack is included for managing subroutines and interrupts.

INSTRUCTION SET ARCHITECTURES
 Two main types of instruction set architectures that greatly differ in the relationship of hardware to software:

 CISC (complex instruction set computer): It provides hardware support for high-level language operations and have
compact programs.

 RISC (reduced instruction set computer): It emphasizes simple instructions and flexibility.
 The instruction set of a CISC machines is rich, while a RISC machine typically supports fewer than 100 instructions.
 The word length of RISC instructions is fixed, and typically 32 bits long. In a CISC machine the word length is variable. In

Intel machines we find instructions from 1 to 15 bytes long.
 The addressing modes supported by a CISC machine are rich, while in a RISC machine only very few modes are supported.

A typically RISC machine supports just immediate and register based addressing.
 The operands for ALU operations in a CISC machine can come from instruction words, registers, or memory. In a RISC

machine, memory access are restricted to load and store instructions; data manipulation instructions are register-to-register;
thus, a RISC machine are called load/store architectures.

I/OS
 They are not considered part of the CPU. One of the most complex areas of computer design, due to the diversity of devices.
 Example: USB, Ethernet, SPI, I2C, displays, hard drive, etc.

